Search results for "electromagnetic [effect]"
showing 10 items of 555 documents
Four-wave mixing and vacuum squeezing in polariton microcavities
2017
In a recent paper [1] it has been shown how a bichromatic fast driving of optomechanical (optical domain) and superconducting circuit systems (microwave domain), operating in a limit where they present a non-linear Kerr-type interaction, can give rise to very strong vacuum squeezing. The driving with two close frequencies of a Kerr cavity changes the usual bistability bifurcation behaviour that takes place under monochromatic driving, into a degenerate four-wave mixing bifurcation, where a phase-bistable component starts oscillating spontaneously at a frequency that lies halfway between the two driving frequencies [2]. This resembles the physics of the optical parametric oscillator threshol…
The electromagnetic field of an accelerated charge in the proper reference frame of a noninertial observer
1989
The Lienard-Wiechert formulae for the electric and magnetic fields of an accelerated charge moving along an arbitrary world-line are generalized so that they can be applied by noninertial observers using accelerating and rotating reference frames. For this purpose, a relativistic coordinate-independent formalism suggested by DeFacio, Dennis and Eetzloff is extended to the description of all kinematical aspects required in the theory of the retarded fields of a point charge. The generalized Lienard-Wiechert formula is applied to a number of special situations, demonstrating that it allows a lucid and concise treatment of a number of subtle problems such as the role of the «relativity of acce…
Ultra-nonlocality in density functional theory for photo-emission spectroscopy.
2014
We derive an exact expression for the photo-current of photo-emission spectroscopy using time-dependent current density functional theory (TDCDFT). This expression is given as an integral over the Kohn-Sham spectral function renormalized by effective potentials that depend on the exchange-correlation kernel of current density functional theory. We analyze in detail the physical content of this expression by making a connection between the density-functional expression and the diagrammatic expansion of the photo-current within many-body perturbation theory. We further demonstrate that the density functional expression does not provide us with information on the kinetic energy distribution of…
Fermi condensates for dynamic imaging of electromagnetic fields.
2008
Ultracold gases provide micrometer size atomic samples whose sensitivity to external fields may be exploited in sensor applications. Bose-Einstein condensates of atomic gases have been demonstrated to perform excellently as magnetic field sensors \cite{Wildermuth2005a} in atom chip \cite{Folman2002a,Fortagh2007a} experiments. As such, they offer a combination of resolution and sensitivity presently unattainable by other methods \cite{Wildermuth2006a}. Here we propose that condensates of Fermionic atoms can be used for non-invasive sensing of time-dependent and static magnetic and electric fields, by utilizing the tunable energy gap in the excitation spectrum as a frequency filter. Perturbat…
Time-dependent Casimir-Polder forces and partially dressed states
2002
A time-dependent CasimirPolder force is shown to arise during the time evolution of a partially dressed two-level atom. The partially dressed atom is obtained by a rapid change of an atomic parameter such as its transition frequency, due to the action of some external agent. The electromagnetic field fluctuations around the atom, averaged over the solid angle for simplicity, are calculated as a function of time, and it is shown that the interaction energy with a second atom yields a dynamical CasimirPolder potential between the two atoms.
Coherent axion-photon transformations in the forward scattering on atoms
2018
In certain laboratory experiments the production and/or detection of axions is due to the photon-axion transformations in a strong magnetic field. This process is coherent, and the rate of the transformation is proportional to the length $l$ and magnitude $B$ of the magnetic field squared, $\sim l^2B^2$. In the present paper, we consider coherent production of axions due to the forward scattering of photons on atoms or molecules. This process may be represented as being due to an effective electromagnetic field which converts photons to axions. We present analytical expressions for such effective magnetic and electric fields induced by resonant atomic M0 and M1 transitions, as well as give …
Exactly solvable model of two three-dimensional harmonic oscillators interacting with the quantum electromagnetic field: The far-zone Casimir-Polder …
2005
We consider two three-dimensional isotropic harmonic oscillators interacting with the quantum electromagnetic field in the Coulomb gauge and within dipole approximation. Using a Bogoliubov-like transformation, we can obtain transformed operators such that the Hamiltonian of the system, when expressed in terms of these operators, assumes a diagonal form. We are also able to obtain an expression for the energy shift of the ground state, which is valid at all orders in the coupling constant. From this energy shift the nonperturbative Casimir-Polder potential energy between the two oscillators can be obtained. When approximated to the fourth order in the electric charge, the well-known expressi…
Loss of coherence and dressing in QED
2006
The dynamics of a free charged particle, initially described by a coherent wave packet, interacting with an environment, i.e. the electromagnetic field characterized by a temperature $T$, is studied. Using the dipole approximation the exact expressions for the evolution of the reduced density matrix both in momentum and configuration space and the vacuum and the thermal contribution to decoherence, are obtained. The time behaviour of the coherence lengths in the two representations are given. Through the analysis of the dynamic of the field structure associated to the particle the vacuum contribution is shown to be linked to the birth of correlations between the single momentum components o…
Analytical wave function of an atom in the presence of a laser pulse
2005
We study a simple model atom that has two bound states and a continuum of free states, interacting with a strong electromagnetic field. In our analysis we assume that only the continuum-continuum transitions occur- ring between degenerate free states are important for the dynamics of the atomic system; adopting this sim- plifying hypothesis, we show that it is possible to describe the time evolution of the atom by means of an infinite but discrete set of first-order differential equations describing a formal model atom that has two bound states and a degenerate quasicontinuum of states. Moreover, these equations depend on a small number of parameters of the bare atom and of the external las…
Computation of the field diffracted by a local surface defect: application to tip–sample interaction in the photon scanning tunneling microscope
1996
We use a method based on the Fourier transform of the electromagnetic field to compute the field diffracted by a local deformation of a plane boundary surface. We give a complete development of each step of the technique. To show the interaction that exists between the probe of a near-field optical microscope and the observed sample, we use the model of a truncated cone-shaped tip above a rectangular surface defect. We compute the electrical intensity along a line located between the tip and the local surface defect. We show the influence of the polarization of the incident wave and the effect of the position of the tip with respect to the position of the surface defect.